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1. INTRODUCTION 

Dobbins and Megaridis (1) have observed soot agglomerates in a diffusion flame via 
thermophoretic sampling. The agglomerates are made up of spherules with a typical 
diameter of about 30 nm. A characteristic of the agglomerate is the relatively low 
density of the structure with much open space as indicated in Fig. 1. 
concerned with modeling the agglomeration growth process. 

Within the flame, the mean free path of the gas is on the order of 300 run. 
these conditions, the particle continues in a straight path for a distance long 
compared to the particle size. Such behavior is termed free molecular. Mountain et 
&. (2) and Sullivan (3) developed a computational technique for simulating 
particle agglomeration under these conditions, though in these studies the 
investigators were limited to a total of 500 primary particles in their simulations. 
The results were very limited in regard to the size distribution function. In this 
study, we have extended the simulations to 8000 primary particles in order to 
determine the size distribution function for agglomerates in the free molecular 
limit. 

In addition to the computer simulation results, an expression for the coagulation 
kernel is developed based on the apparent fractal structure of the agglomerate and 
the free molecular particle dynamics condition. The size distribution function 
appropriate to the coagulation kernel is derived in the limit of long time based on 
the dynamic scaling analysis of van Dongen and Ernst ( 4 ) .  We also directly compute 
the size distribution function based on a numerical solution of the coagulation 
equation. 

Previous studies of free molecular particle coagulation have been based on spherical 
particles. Lai a (5) have shown that free molecular coagulation with 
coalescence leads to a so called self-preserving size distribution. 
Mulholland (6) considered simultaneous particle formation and free molecular growth, 
but again with the assumption of spherical particle shape. 
conditions similar to those existing in a flame, the simultaneous particle formation 
can lead to a much broader size distribution than the self-preserving distribution 
obtained by Lai a. As indicated above, the soot in the flame exists as an 
agglomerate. It is of obvious interest to determine the size distribution, 
structure, and growth kinetics for agglomerates. 

Meakin 
cluster-size distribution. 
size k is assumed to be proportional to k7. 
, c  7 =-1/2, at which the shape of the cluster-size distribution crosses over from a 
monotonically decreasing function to a bell-shaped curve. A Monte Carlo simulation 
is used with the diffusional motion of the clusters represented by random walks on a 
three-dimensional cubic lattice. In all cases considered, the primary particle size 
corresponds to one lattice site and the diffusion step is one lattice site. This 
differs from the free molecular condition that the particle move several particle 

This study is 

Under 

Dobbins and 

They find that for 

(7) have studied the effect of the cluster diffusivity on the resulting 
In their study, the diffusion coefficient of a cluster of 

Meakin a find a critical value of 7 
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diameters before changing its trajectory. 
motion that is the focus of this paper. 

It is this latter case of free molecular 

2. Description of Computer Simulation 

The initial condition consists of 8000 spheres of mass m, and unit diameter u 
randomly located in a cube of size L. 
random number generator which produces normally distributed numbers with unit 
variance so that the particles are in thermal equilibrium with the background gas 
through which they diffuse. 

The dynamics of a particle are governed by the Langevin equation 

The initial velocities are obtained using a 

d(mv,)/dt--mpv, + fx [I1 

where vx is the xth Cartesian component of the velocity of the center of mass of the 
agglomerate of mass m and f, is a stochastic force satisfying <f:>-Zpmk,T. As can be 
seen from Eq.[l], 8-l  represents the relaxation time of the agglomerate. The 
numerical solution of Eq.[l] to obtain the velocity and coordinates for each particle 
after a time interval h is described in Mountain & (2). 

After each time interval h, the system is examined to see if any agglomeration events 
have occurred. It is assumed that whenever two particles "touch", they stick and the 
resulting agglomerate diffuses as a rigid assembly. 
thermally accommodated after each collision, since thermal accommodation with the 
host gas may not occur before a second collision at the high particle concentration. 

The product mp in Eq.[1] is termed the friction coefficient, K. We approximate the 
friction coefficient of k spheres as k times the friction coefficient of a single 
sphere. In making this approximation we neglect the shielding effect of the other 
spheres, but for a tenuous, low density agglomerate this is a reasonable first 
approximation. Both the mass m and the friction coefficient K are proportional to 
the number of particles in the agglomerate k; therefore, p is independent of the size 
of the agglomerate in this independent particle approximation. Dividing both sides 
of Eq.[l] by m, it is seen that the quantity p is the controlling parameter for the 
particle dynamics. 

I Also, the agglomerates are 

! The free molecular condition corresponds to the particle relaxation time, p - l ,  being 
long compared to the time, r-(m,oZ/&T)k, to free stream a particle diameter; that 
is, , 

pr<<1. [ 2 1  

The following result is derived for p r  in the free molecular limit in Mountain 
(2): 

where m, is the mass of an individual sphere, p s  refers to the density, and m 
mass of the gas molecules. 
unity. The simulations are carried out for pr-0.2, which corresponds to a 16 nm 
particle diameter for a 1500 K flame temperature, and for pr-0.05, which corresponds 
to a 6 nm diameter. The density of the individual particle is taken to be 2.0 g/cm3 
and ambient pressure is assumed. 

Another important parameter concerning the simulation is the number density, p ,  
defined as the number of particle per volume, where volume is in units of u 3 .  
Simulations were performed for the following values of p :  0.05, 0.0167, and 0.005. 
Even the lowest of6these densities is several orders of magnitude larger than the 
value of about 10- observed in flames. 

is the 
The surface accommodation is assumed to have a va'iue of 

The density dependence of the results 
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provides insight regarding the applicability of the simulations to an actual flame. 
A value of p of 0.005 is the lowest density for which the simulation can be carried 
out for 8000 particles with 5 runs to obtain adequate statistics using a Cyber 205 
computer4. 

3. RESULTS 

While the primary focus of this study is the results regarding the size distribution 
function, it is also of interest to analyze the structure of the agglomerates and the 
cluster growth rate. The structural information will be used in the next section for 
deriving an effective collision kernel for the agglomerates. Given the collision 
kernel, the size distribution can be determined as shown in the next section. The 
cluster growth rate is of interest in its own right but is also needed for obtaining 
the scaled size distribution function. 

3 . 1  Structure 

The structure of the agglomerates is quite open as indicated in Fig. 1 for a planar 
projection of the structure. It is also seen that there is a similarity between the 
actual structure of soot produced by an acetylene diffusion flame and the results of 
the computer simulation. As has been demonstrated in a number of studies of 
agglomerate growth including Meakin ( 8 , 9 )  and Mountain & (2), the degree of 
openness can be conveniently characterized in terms of a fractal dimensionality, D,, 
which in the case of an agglomerate is conveniently defined by the equation 

k a RgDf [41 

where R is the radius of gyration of the cluster. 
versus log k for the case f i r -0.05 and p-0.005. A linear least square fit of the data 
over the range 10-500 in k with a uniform weighting on a log  scale leads to 
D,-1.91+0.06. The choice of the lower bound is determined by onset of power law 
behavior and the upperbound by condition that agglomerate not extend from one edge of 
the cell to the other. A indicated in Table I, the mean values of Df are in the 
range 1.89 - 2.07. 
Meakin (10) for cluster in the size range 10-500 with p-0.005. 
Meakin consists of random linear trajectories by both particles and clusters. 
model was originally introduced by Sutherland and Goodarz-Nia (11). 
would correspond to the limiting case fir-0 for the free molecular simulation. 

In Fig.2, log R, is plotted 

This is to be compared with a value of Df-1.87f0.04 obtained by 
The model used by 

The 
This model 

3 . 2  Cluster Growth 

The average cluster size, E, is defined by 

k=N,/N(t) , [ 5 1  

where No is the number of primary particles and N(t) is the total number of clusters 
at time t. 
for all of the simulations. 

In Fig.3, k is plotted versus number of time steps, tN, on a log-log p l o t  
The mean cluster size increases asymptotically as 

ic a t* ( t-w) 161 

The exponent z is obtained from a linear least square fit of the log-log plot for the 

‘Certain commercial equipment is identified in this paper to specify 
adequately the calculation method. In no case does such identification imply 
recommendation or endorsement by the National Bureau of Standards, nor does it 
imply that the equipment identified is necessarily the best available for the 
purpose. 
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range in t over which 20<k<lOO. 
decrease in z with decrease in density. 

An alternative method for determining the exponent z is suggested by the aFalysis of 
van Dongen and Ernst ( 4 ) .  

A s  indicated in Table I. there seems to be a 

They obtain the following relationship between k and tN: 

ic a (t,+ti)z [71 

The value of ti is obtained as the value for which log(k) versus log(t,+ ti) has no 
curvature. 

In Fig. 4 ,  all of the data is reduced to a single curve by plotting k vs. r l ,  where 

The value of the exponent z obtained in this way is also given in Table I 

rl-(t/r)p . 181 

3 . 3  Cluster Size Distribution 

The cluster-size distribution, N k ,  is plotted in Fig. 5 at several times. As a test 
for the existence of a self-preserving cluster distribution, we also plot the size 
distribution in terms of the similarity variables, $ and '1. introduced by Friedlander 
( 1 2 )  % 

~ ~ - i c ~ ~ , l g ( ~ )  , 191 

pk/6 . [lo1 

It is seen from Fig. 6 that the similarity variables do reduce all of the cluster- 
size distributions to a single curve. 
size distribution is treated in the next section. 

Perhaps the size distribution function affording the best comparison with experiment 
is the number distribution in terms of the radius of gyration, R G .  

The possibility of deriving this universal 

~ / ~ R , - A D ~ R ~ ~  [I11 

Such a size distribution is plotted in Fig. 7. 
evaluate R, for every cluster by electron microscopy, one might rapidly determine an 
effective size of the agglomerate based on its length and width. 

While it may not be practical to 

4. Coagulation Equation 

The most widely used tool for studying irreversible clustering phenomena in many 
fields of science is Smoluchowski's coagulation equation: 

&-bc K(i,j)n,nj - %X K(k,j)nj , [I21 

where % is the number concentration of clusters of size k and K(i.j) ,the 
coagulation kernel, represents the rate coefficient for a speciEic clustering 
mechanism between clusters of sizes i and j. Below an estimate is made for the 
coagulation kernel for the case of free molecular growth and then Eq. [12] is solved 
analytically in the asymptotic limit as well as numerically. 
compared with the results of the computer simulation. 

Finally the results are 

4.1 Coagulation Kernel 

Far the case of small droplets that coalesce upon contact, the free molecular 
coagulation kernel is given by 

K(i,j)-a(i113 + j1'3)2(1/i+1/j)k 1131 
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The first factor in Eq.[13] corresponds to the size dependence of the collision cross 
section and the second term to the dependence of the average relative velocity on the 
reduced cluster mass. The quantity K(i,j) given above is essentially identical to 
the kinetic theory prediction of the volume swept out per second by colliding 
molecules. 

The collision cross section of two low density agglomerates ( fractal objects with 
Hausdorf dimension Df-1.9) in free flow (ballistic trajectories) is much larger than 
for compact spheres, mainly because of their large radii of gyration, 

R, a k1IDf. 

However, .there is a subtlety in the argument. 
cluster or cross-sectional area (see Fig. 1) is still a fractal object with Hausdorf 
dimension D,-.1.9. 
fractal clusters with Df42 and sizes i and j respectively is: 

Since Df<2, the planar projection of a 

Therefore, the effective scattering area for two free moving 

cross-section a (R,(i)+R,(j)Df 

1s (il/Df+jl/Df)Df 

If however the fractal dimension of the clusters would be 2SDfS3, then their 
projections would be compact objects and their collision cross-section would be: 

cross-section CI (R,(F)+R, ( j ) )2 

98 (il/Df+jl/Df)Z 

Note that the cross-section in both cases [15] and [16] is bounded by const.xj for 
j>>i. This is a physically obvious requirement. Equation [16] for Df<2 would 
violate this condition (See Mountain u ( 2 ) ) .  

The agglomerate speed is not affected by the particle structure based on the 
equipartition of energy so that the coagulation kernel for the agglomerate in the 
free molecular limit is given by 

K(i,j)-aI(i1IDf + jl’Df)Df(l/i + l/j)* , 1171 

Van Dongen and Ernst (4) have obtained asymptotic solutions to the coagulation 
equation, Eq.[14], for coagulation kernels classified on the basis of three exponents 
defined below: 

K(ai,aj) - aAK(i,j) - aAK(j,i) , [I81 1 

~191 4 K(i,j) = i’j” (j>>i; X - p + v ) .  

\ For K(i,j) given by Eq.1171, X - h, p - -k, and Y - 1. For X 5 1, van Dongen and 
Ernst (4) show that the exponent z is given by I 

ri 
z - 1/(1 - A ) .  [201 

j So for X - h, z - 2 .  
is given by van Dongen and Ernst (13). 

The general form of the reduced size distribution for large q 

$(rl) = Arl-’exp(-arl) , rl - m . [211 
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For coagulation kernels with v<l .  the 0 exponent is simply given by 8-1. However, 
for kernels with v-1, such as given in Eq.[17], the 8 exponent is more complicated. 
It has been calculated by van Dongen and Ernst (13). and we conclude from their 
Eqs.[12] through [15] that the exponent 8 is determined from the following 
transendental equation: 

J ( 8 )  - 0 ,  [221 

where J ( 8 )  is defined by 

J ( 8 )  - ~dx(K(x,l-x)[~(l-x)]-~-xJ’-~) - P dx x@-O . 1231 

Since the first integrand diverges at x-0, an asymptotic expansion is made for the 
integrand to obtain the small x contribution to the integral. For the remainder of 
the range in x, the integration is obtained numerically. For the case D,-1.90, we 
obtain 8-0.72. 

For large values of D, the asymptotic solution of Eq.[23] is (14) 

0 = 1/2 + 21-Df/r (D,>>l) 

This relation gives at D,-1.9 the fair estimate 8-0.67 and at D,-1 is even close to 
the exact value 8-1. 

The size distribution plots given in Fig. 6 suggest a power law region followed by an 
exponential region. 
depending on the range in q over which the line is drawn. A better method is to 
first obtain k from the large q asymptotic slope of ln$ vs q and, then obtain 0 
the slope of kq+ln$ vs lnq. 
yields a-0.67 and 8-0.53 compared to the predicted value of 0 of 0.72. There is 
still some ambiguity in the value of 8, because of the interplay between the value of 
a and 8. 
good fit to the simulation results, 

However, one finds a wide range in the value of 8, 0.4 to 0 . 8 ,  

from 
This approach applied to the case pr-0.05 and p-0.005 

That is, a lower value of a and a larger value of 8 will also lead to a 

In the limit of small cluster size and long time, van Dongen and Ernst (4) predict 
that 

~ 4 1  
2 + ( q )  a q -  exp(-l/q4) for q + o . 

Unlike this predicted exponential behavior, it appears that $ ( q )  decreases only 
slightly for small q .  
being carried out to long enough time. 

Another approach to comparing the results of the simulations with coagulation theory 
is to numerically solve for Nk vs k from Eq.[13] based on the kernel given by 
Eq.[17]. 
solved by the Runge Kutta method with fourth order predictor corrector. 
analogous to the technique used by Hidy 
equation. Starting from a monodisperse size distribution as in the simulations, it 
was found that the loss of mass due to particles reaching k-1024 represented a 4% 
effect when the total number concentration had dropped by a factor of 100. It is 
seen from Fig. 6 that the reduced size distribution obtained from the numerical 
solution of the coagulation equation is both self-preserving and agrees very well 
with the results of the computer simulation. 
characterizing the cluster growth rate is found to be in good agreement with the 
computer simulation results (1.84 for the coagulation equation vs 1.72 for the 
simulation). 

Presumably this discrepancy results from the simulations not 

One thousand twenty four coupled rate equations given by Eq.[13] were 
This is 

(15.16) for solving the coagulation 

The value of the exponent z 
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5 .  Discussion 

The computer simulations of free molecular agglomeration lead to much more rapid 
growth than is predicted for coalescing droplets in the free molecular limit, which 
has been the basis for predicting coagulation rates in flames in previous studies 
(5.6). 
about 1.2 based on coalescence. 

The results of the computer simulations in terms of the fractal structure and the 
size distribution function seem to vary only slightly with the choice of ,9 (0.2 and 
0.05) and p (0.05, 0.0167, 0,005). There appears to be a more pronounced affect of 
the density on the value of the exponent z with the higher density leading to a 
higher value of z. The value reported by Mountain a (2) for a system with 500 
primary particles was larger yet with a value of about 2.6 for z. 
simulation with the lowest density (p -0 .005 )  and lowest value of /I (0.0:) to give the 
most appropriate value for physical systems. For the limited range in k, Eq.[7] is 
the most accurate method for determining the exponent z, and this leads to 2-2.05 for 
the simulation. 

We do not observe as large a density effect in the free molecular limit as has been 
observed by Mountain et al. (2) in the continuum limit and by Ziff (17) for 
agglomerates with diffusion coefficient proportional to the cluster size raised to a 
power. 

We find that a coagulation kernel derived.based on the fractal structure of the 
agglomerate leads to an average growth rate and self-preserving size distribution in 
good agreement with the computer simulations. The computer simulations have not been 
run for long enough time to afford a comparison with the predicted small 9 behavior.. 

Ziff a (17) demonstrated that for a size dependent diffusion coefficient the 
kinetic rate kernel predicted by taking into account the fractal geometry of the 
agglomerate is in agreement with the computer simulation results. We have shown that 
in the free molecular limit that using a kinetic rate kernel based on fractal 
geometry leads to a size distribution in agreement with the computer simulation. One 
is encouraged to conjecture that the coagulation equation can be applied to 
agglomerates provided the agglomerate structure information is included in the 
kinetic rate. 

The agglomeration leads to an exponent z of about 2.0 compared to a value of 

We expect the 
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0.20 0.05 2.05f0.03 1.98f0.05 
0.05 0.05 2.07f0.08 2.40f0.16 4.06fO. 19 
0.05 0.0167 1.89f0.08 1.92f0.07 2.53f0.05 

0.005 I. 91f0.06 1.72f0.05 2.05M.03 0.05 

TABLE I. Exponents D, and z for Free Molecular Simulations 

< 
500 
900 

2000 

a The exponent z is defined by 
Here the exponent z is defined by 

k a (tN)*. 
k a (tr+t;)'. 

Soot (acetylene fuel) Agglome 

10 Spheres 

ntion Mode 

12 Spheres 

33 Spheres 33 Spheres 

107 Spheres 108 Spheres 

Fig. 1. Qualitative comparison of soot clusters and clusters obtained 
by computer simulation of free molecular growth. 
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Fig. 2. R versus k for 87-0.05 
anJ p-0.085. 
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Fig. 3. k versus time steps 
for ,%=0.2, p - O . O 5 ( - ) ;  87-0.05, 
p-O.O5(----), p-0.0167(- -), 
p=0.005(-- . - - . ) .  
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Fig. 4.  k versus r l ,  for 87-0.2, p-O.O5( - ) ;  
8~=0.05, p - O . O 5 ( - - - - ) ,  p-0.0167(- -), 
p=0.005(-- . - - . ) ,  fractal coagulation 
(- -), coalescence(-) slope-1.2. 542 
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Fig. 5. Size distribution for 
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Fig. 6. Self-preserving sized 
distribution for simulation, 
fractal coagulation(-), 
coalescence(-). 

0 
LT 

2 
U 

? 


